The search for DNA homology does not limit stable homologous pairing promoted by RecA protein

نویسندگان

  • Janet E. Yancey-Wrona
  • R.Daniel Camerini-Otero
چکیده

BACKGROUND The basic molecular mechanisms that govern the search for DNA homology and subsequent homologous pairing during genetic recombination are not understood. RecA is the central homologous recombination protein of Escherichia coli; because several RecA homologues have been identified in eukaryotic cells, it is likely that the mechanisms employed by RecA are conserved throughout evolution. Analysis of the kinetics of the homologous search and pairing reactions catalyzed by RecA should therefore provide insights of general relevance into the mechanisms by which macromolecules locate, and interact with, specific DNA targets. RESULTS RecA forms three-stranded synaptic complexes with a single-stranded oligonucleotide and a homologous region in duplex DNA. The kinetics of this initial pairing reaction were characterized using duplex DNA molecules of various concentrations and complexities containing a single target site, as well as various concentrations of homologous single-stranded oligonucleotides. The formation of the synaptic complex follows apparent second-order reaction kinetics with a rate proportional to the concentrations of both the homologous single-stranded oligonucleotide and the target sites within the duplex DNA. The reaction rate is independent of the complexity of duplex DNA in the reaction. We propose a kinetic scheme in which the RecA-single-stranded DNA filament interacts with duplex DNA and locates its target in a relatively fast reaction. We also suggest that complex conformational changes occur during the subsequent rate-limiting step. CONCLUSIONS We conclude that, during the formation of synaptic complexes by RecA, the search for homology is not rate-limiting, and that the iteration frequency of the search is around 10(2)-10(3) s-1. This value agrees well with what has been calculated as the minimum number for such a frequency in genome-wide searches, and limits the possible structures involved in the search for homology to those involving very soft (low energy) interactions. Furthermore, from the order of the reaction at the DNA concentrations found in eukaryotic nuclei, and the rate constant of the overall reaction, we predict that the search for homology is also not the rate-limiting step in the genome-wide searches implicated in meiosis and in gene targeting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of negative superhelicity and length of homology in the formation of paranemic joints promoted by RecA protein.

Escherichia coli RecA protein pairs homologous DNA molecules to form paranemic joints when there is an absence of a free end in the region of homologous contact. Paranemic joints are a key intermediate in homologous recombination and are important in understanding the mechanism for a search of homology. The efficiency of paranemic joint formation depended on the length of homology and the topol...

متن کامل

RecA homology search is promoted by mechanical stress along the scanned duplex DNA

A RecA-single-stranded DNA (RecA-ssDNA) filament searches a genome for sequence homology by rapidly binding and unbinding double-stranded DNA (dsDNA) until homology is found. We demonstrate that pulling on the opposite termini (3' and 5') of one of the two DNA strands in a dsDNA molecule stabilizes the normally unstable binding of that dsDNA to non-homologous RecA-ssDNA filaments, whereas pulli...

متن کامل

Homologous recognition promoted by RecA protein via

The RecA protein of Escherichia coil forms a nucleoprotein filament that promotes homologous recognition and subsequent strand exchange between a single strand and duplex DNA via a three-stranded intermediate. Recognition of homology within three-stranded nucleoprotein complexes, which is probably central to genetic recombination, is not well understood as compared with the mutual recognition o...

متن کامل

The mechanism of the search for homology promoted by recA protein. Facilitated diffusion within nucleoprotein networks.

recA protein promotes the homologous pairing of single strands with duplex DNA by polymerizing on the single strands to make presynaptic nucleoprotein filaments which are polyvalent with respect to duplex DNA and which consequently form large networks or coaggregates when duplex DNA is added. Previous work has shown that efficient homologous pairing occurs within these networks. In the experime...

متن کامل

The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA.

A key step in homologous recombination is the alignment and pairing of homologous DNAs. The Escherichia coli RecA protein initiates pairing by binding to single-strand DNA, forming a helical nucleoprotein filament. We demonstrate that in the presence of the nonhydrolyzable ATP analogue adenosine 5'-[gamma-thio]triphosphate and ADP, RecA can pair a homologous oligonucleotide 15 bases long with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1995